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Abstract—In this letter, we propose a locomotion training frame-
work where a control policy and a state estimator are trained
concurrently. The framework consists of a policy network which
outputs the desired joint positions and a state estimation network
which outputs estimates of the robot’s states such as the base
linear velocity, foot height, and contact probability. We exploit a
fast simulation environment to train the networks and the trained
networks are transferred to the real robot. The trained policy and
state estimator are capable of traversing diverse terrains such as a
hill, slippery plate, and bumpy road. We also demonstrate that the
learned policy can run at up to 3.75 m/s on normal flat ground and
3.54 m/s on a slippery plate with the coefficient of friction of 0.22.

Index Terms—Legged robots, reinforcement learning.

I. INTRODUCTION

IN RECENT years, reinforcement learning (RL) has become
one of the most popular control approaches for legged robots.

For quadrupedal robots, there have been remarkable improve-
ments in learning dynamic locomotion skills. Hwangbo et al. [1]
trained control policies for the ANYmal robot [2] for robust and
high-speed locomotion while keeping the balance under large
disturbances. In the later works [3] and [4], RL-trained policies
made a quadrupedal robot traverse over various challenging
terrains such as slippery ground, vegetation, and rocky terrain.
They trained an encoder which compresses environmental infor-
mation and enabled effective environment-aware locomotion.
Moreover, Peng et al. [5] reproduced agile motions of animals
by imitating recorded motion trajectory data. They made the
Laikago robot walk and turn at moderate speed.

More complicated trained behaviors, such as dynamic recov-
ery from a fall [1], [6], have been reported in the literature. These
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Fig. 1. Dynamic and robust locomotion on a slippery plate of the friction
coefficient of 0.22. The Mini Cheetah is traversing over it at the average speed
of 3.54 m/s.

complex behaviors can be composed of a single framework
using pre-trained expert networks and a gate neural network,
and manifest agile and effective motions [7] on the real robot.
Furthermore, RL can be utilized for bipedal robots to climb
up stairs [8] or to display diverse locomotion patterns such as
standing, walking, and running [9].

The existing control approaches for quadrupedal locomotion
rely on accurately estimated state input [1], [3], [4], [7], [10]–
[13]. However, we observed that existing state estimation algo-
rithms become unreliable [14], [15] on challenging terrains, such
as ice and sand. Moreover, many state estimation algorithms,
such as the one built in to the Mini Cheetah robot, require gait
patterns a priori. Most neural network control policies often do
not provide such information because the patterns are learned as
well. Alternatively, contact states can be estimated either from
the model [16] or dedicated contact sensors, but the former
is computationally costly and the latter is prone to permanent
damages during foot landing. Therefore, it is desirable to develop
a control framework that does not rely on contact information.

In addition, to walk and run on challenging terrains blind,
information about the terrain must be estimated. An analytical
method can be employed [10] to estimate part of the information.
Alternatively, it can be estimated implicitly using a trained
neural network and proprioceptive state history [3], [4]. The
proprioceptive state history is useful for estimating both intrinsic
robot states and extrinsic environment variables. However, this
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Fig. 2. An overall control diagram and a proposed training framework for concurrent training of a control policy and a state estimator are shown. The estimator
network takes sensor data ot as an input and outputs state variables, which are the base linear velocity, foot height, and contact probabilities. These estimated states
are fed into the policy network together with the observation ot. The estimator network is trained with supervised learning to reduce MSE between the estimated
robot states and their corresponding true values obtained from simulation. An actor network is a policy which produces desired joint positions based on the state
estimates. Both the critic and actor are trained using the PPO algorithm.

approach has two different major drawbacks. First, because
the latent vectors are not interpretable, they cannot be used in
conjunction with other modules that require state information.
Second, the encoder training causes a significant computational
overhead. An alternative to this approach is to directly estimate
observable state variables such as the terrain angle. In our
proposed approach, this information is indirectly estimated as a
distance from the terrain to the foot.

To address the aforementioned shortcomings of the existing
methods, we present a learning-based state estimation network,
which is concurrently trained with the policy network. The
efficacy of our method is demonstrated using the Mini
Cheetah robot [17], which is a lightweight and highly dynamic
quadrupedal robot. Dynamic and robust locomotion of the
robot is shown in Fig. 1. Kim et al. [11] reports an MPC-based
controller that could make Mini Cheetah run at up to 3.7 m/s on
a treadmill and [17] achieves 2.45 m/s in outdoor environments.
We hereby report highly dynamic locomotion at 3.74 m/s in
various indoor and outdoor environments and robust and reliable
locomotion behaviors on a slippery plate, bumpy asphalt road,
and hills.

Our main contributions are as follows:
� We propose a simple end-to-end locomotion learning

framework that concurrently trains a control policy and
a state estimator.

� Using the trained networks, we demonstrate dynamic lo-
comotion on slippery terrains and slopes.

� We share the training details, such as the dynamic random-
ization and curriculum, so that our work can be reproduced
by other researchers.

II. METHOD

Our goal is to develop an RL-based control framework that can
follow the given velocity command, which consists of desired
base linear velocities in the forward and lateral directions, and
the desired yaw rate. We assume that the robot is equipped with
an Inertial Measurement Unit (IMU) and joint encoders.

An overview of our control framework is illustrated in Fig. 2.
The framework consists of three different neural networks: the
estimator, critic, and actor. The estimator network estimates
multiple relevant state variables for control using the onboard
sensors and feeds them to the actor network which outputs
actuator commands. The critic network helps reduce variance in
the policy gradient estimate from the RL algorithms. All neural
networks are trained in simulation using RaiSim [18].

We use Proximal Policy Optimization (PPO) [19] for training
the actor and critic, and supervised learning for training the
estimator network. After a collection of a batch of trajectories in
RaiSim, we update all three networks using their corresponding
loss function. This process repeats like in the vanilla PPO until
the performance metric converges. This concurrent learning of
the two networks ensures that the policy network can adapt to
the performance characteristics of the estimator network. For
example, when the estimation is unreliable due to slippery foot
contacts, the policy network will be trained with unreliable state
estimates and manifest conservative behaviors.

The Mini Cheetah robot [17] is the robotic platform used in
this work. Its compact size and powerful actuators enable us to
tackle difficult tasks such as high-speed locomotion on slippery
terrain. In addition, the source code for robot operation is
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TABLE I
INITIAL STATE NOISE

available online,1 which includes a high-performance
locomotion controller [11]. Furthermore, its IMU sensor,
3DMGX5-AHRS made by Lord Corporation, provides not
only the linear acceleration and angular velocity but also the
estimated orientation based on the extended Kalman filter.
Our version of the Mini Cheetah is 1.8 kg heavier and 1 cm
longer compared to the original version presented in [17]. Our
implementation code for the real robot can be found online.2

A. Training in Simulation

The policy is trained on flat terrain in 800 different environ-
ments to efficiently collect samples. In each environment, the
robot is initialized with highly random initial states as shown in
the Table I. This helps the robot to recover from unexpected ex-
ternal disturbances such as interactions with humans or sudden
changes in terrain parameters. With the probability of 25 %, the
robot is initialized with the final state of the previous episode,
whereby the robot can learn to overcome sudden changes in the
velocity command in the real world. For further improvements,
we also train the model in environments where an uneven flat
terrain or slopes up to±10◦ are randomly generated. The uneven
terrain was created using Perlin noise of the following param-
eters (fractal octaves = 5, fractal lacunarity = 3.0, fractal gain
= 0.45, z-scale =min(0.21, 0.21·t−1) where t is the number of
iteration).

To train a policy more effectively, we set up a curricu-
lum where the velocity command in the x-direction (i.e.,
forward/backward direction) gradually increases over each
PPO iteration. At the early stage of training, the linear
velocity command in the x-direction is uniformly sampled
from U1(−0.5, 1.0) m/s. This range gradually enlarges up to
U1(−1.75, 3.5) m/s, with the maximum forward command
given according to

Vx,max = 1 +
2.5

1 + exp(−0.002 · (t− 1000))
, (1)

where t is the number of training iterations. Ten percent of the
trajectories are then selected to have a zero velocity command
for learning a standing still behavior.

We define reward functions and their coefficients as shown in
the Table II. The reward function is designed for two objectives:
to follow the given command and to run in an efficient and natural
way. The linear and angular velocity rewards are related to the
former objective, and the other rewards are for the latter one.

1https://github.com/mit-biomimetics/Cheetah-Software
2https://github.com/karlji1021/Cheetah-Software

TABLE II
REWARD FUNCTIONS

Most of the reward functions are shaped by referring to [1].
Among them, the foot clearance reward is important for a
successful sim-to-real transfer because the relative foot positions
to the ground and terrain geometry might be uncertain in some
situations. The square-root function in the foot clearance reward
is to increase its influence on the policy when the commanded
velocity is too low. Airtime reward is designed for controlling
swing-stance timing and generating standing still motions.

In the Table II, cmd is an abbreviation of command and i is
an index of the foot. Ta,i and Ts,i represent the time since last
takeoff and touchdown, respectively, while being initialized to
zero whenever a transition happens. Tmax,i = max(Ta,i, Ts,i)
is the bigger one of the two. Cf,i in the foot slip reward is
the contact state of each foot. In the foot clearance reward,
wp

des
f,z is the desired foot height and it is set to 0.09 m. We

define a positive reward sum as rpos = rv + rω +
∑3

i=0 rair,i
and a negative reward sum as rneg =

∑3
i=0(rslip,i + rcl,i) +

rori + rτ + rq + rq̇ + rq̈ + rs1 + rs2 + rbase. The total reward
is defined as

rtot = rpos · exp(0.2rneg) (2)

This form of a reward function ensures that the resulting reward
is always positive and discourages the policy to choose an early
termination. Whenever the body of the robot except the knees
and feet contacts the environment, the episode terminates and
the robot is punished with a reward of−10. Therefore, the policy
is trained toward reducing unnecessary collisions.

B. Network Architecture

Our neural network structure consists of 3 components: an
actor, a critic, and an estimator. All of them are designed as
a Multi-Layer Perceptron (MLP) network, with the actor and
critic having a [512× 256× 64] structure, and the estimator
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having a [256× 128] structure. An MLP is the simplest neural
network structure and computationally more efficient than other
memory-based networks such as RNNs. We trained policies in
a form of an LSTM but could not find meaningful differences in
performance. The actor maps an observation to an action and the
critic [20] estimates the value of the current state. The estimator
network is to estimate states of the robot such as the base linear
velocity. Those values are estimated by taking an observation
ot as an input, and fed to the actor. The estimator network is
trained using supervised learning with data from the simulation.
Both the policy and the estimator are running synchronously at
100 Hz. The network structure is shown in Fig. 2.

Our system takes sensor data as an input, and outputs desired
joint positions for each actuator. Our framework still uses an
analytical estimate of the gravity vector expressed in the body
frame because it is computed by the IMU sensor. Furthermore,
the estimation algorithms for the orientation are simple and
reliable. Joint velocities are computed on the motor controllers
by applying the finite difference method on joint positions.

The observation tuple is defined as

ot = (φ, ω, q, q̇, qdest−1, q
des
t−2, Qhist, Q̇hist,b pf , cmd) (3)

where φ and ω are the base orientation and angular velocity, q
and q̇ are the joint positions and velocities, qdest−1 and qdest−2 are the
desired joint position targets for two previous time steps, Qhist

and Q̇hist are the joint position error history and joint velocity
history, bpf is the Cartesian positions of the feet relative to the
center of mass expressed in the body frame, and cmd is the
given velocity command. The Cartesian foot positions are for
observing where the feet are located, and it is known to be helpful
for training a policy for complicated systems [21]. For our study,
joint state history is selected at t− 0.02 s, t− 0.04 s, and t−
0.06 s. For stable learning and control, all observation variables
are normalized to have a mean of 0.0 and a standard deviation
of 1.0. For the same reason, policy outputs are multiplied by
a nominal value and then added to nominal joint positions to
obtain the desired joint target distributions. This relationship
is expressed as qdest = qnominal + σaat, where qnominal is the
nominal joint positions, which is the same as the standing up
configuration, σa = 0.1 is a predefined action scaling factor, and
at is an output of the policy network. The desired joint positions
are computed at 100 Hz and converted to joint torques by a PD
controller module with Kp=17 N·m ·rad −1 and Kd=0.4 N·m·s
· rad−1, at 40 kHz on the real robot.

The estimator network is designed to predict the state of
the robot without utilizing a dedicated estimation algorithm. In
this paper, the linear velocity, foot height, and contact prob-
ability are estimated. The linear velocity estimate is essential
in following velocity command. By removing the necessity of
sophisticated state estimation algorithms, the implementation on
the robot becomes much simpler. It also has an advantage that
the controllers become robust against inevitable errors of the
state estimator. As illustrated in [15], estimation of the linear
velocity under highly erroneous environments is vulnerable to
foot slips. Our end-to-end neural network structure avoids such
a challenge in two ways. First, the estimator network is trained
in environments where the feet slip often. Therefore, it can

still produce a reasonable estimate of the linear velocity using
other sensor information and previous observations. Second, the
policy network is trained with imperfect information such that
it is aware of possible slippages.

The idea behind learning foot height and contact probability
is to achieve the sufficient foot clearance. Due to the wide range
of velocity command and the clearance reward that penalizes
high speed, the foot clearances become smaller at low speeds.
Foot clearance plays an important role in a sim-to-real transfer
because insufficient foot clearance might lead to an early foot
landing or tripping while running. We discovered that the reward
term alone is not sufficient to learn to maintain sufficient foot
clearances. Our solution to this problem is to estimate the foot
clearances and feed them directly to the policy network. We
note that a learning-based estimator is capable of approximately
estimating the foot clearance from the observation. First, foot
contact states are obtainable from joint position errors. Second,
a terrain slope becomes observable from the foot contact states,
orientation, and joint positions. Therefore, as the slope is observ-
able, the estimator network can compute the foot height under
the assumption that the terrain is even.

C. Dynamics Randomization

Dynamics randomization is important for a successful sim-to-
real transfer of policies trained in simulation [22]. In our case,
the robot controller learned without dynamics randomization
exhibits shaky motions when deployed on the real robot. It comes
from the fact that kinematic and dynamic parameters such as leg
length, actuator positions, and center of mass, are not exactly the
same as those used in the simulation. Consequently, this reality
gap often makes the robot unable to reach sufficient perfor-
mance. To eliminate this gap, we randomize several components
as follows:
� observation noise
� motor frictions
� PD controller gains
� foot positions and collision geometry
� ground friction
These parameters are randomized at the start of each episode

or iteration.
The observation noise is added during the training phase in

the simulation. On the real robot, joint velocity measurement
comes from numerical differentiation of the joint positions,
which causes errors in the joint velocity observation. Moreover,
fluctuation in the logging frequency might lead to a failure in
updating the velocity values for a single time step. Such an event
corresponds to a delay of 2 milliseconds. Therefore, the joint
position and velocity measurements in simulation are random-
ized to reflect the true distribution of the measurements; they
are sampled from U12(-0.05, 0.05) rad and U12(-0.5, 0.5) rad/s,
respectively. For the same reason, a uniformly distributed noise
U4(-0.03, 0.03), U4(-0.03, 0.03) m, and U3(-0.1, 0.1) rad/s are
added to the base orientation, foot position, and base angular
velocity, respectively.

Motor friction is randomized to reflect the differences be-
tween actuator units. We chose a conservative range of U
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1(0, 0.3) N·m for the hip abduction/adduction (HAA) and hip
flexion/extension (HFE), and U 1(0.1, 0.7) N· m for the knee
flexion/extension (KFE). Their measured friction values on the
real robot are 0.2, 0.2, and 0.5 N ·m for HAA, HFE, and
KFE, respectively. The KFE joints have higher friction because
they have an extra belt transmission. The PD controller gains
are randomized to mitigate the effects of motor friction and
damping. We added a uniform noise of U 1(-2, 2) N·m·rad −1,
and U1(-0.1, 0.1) N·m·s · rad−1 for the position and velocity
gains, respectively.

The foot position and collision geometry are randomized to
reduce both effects of measurement errors and the deformation
of the rubber feet. The foot position observations are disturbed
with a uniform noise of U1(−10, 10) mm in the longitudinal
direction, U1(−5, 5) mm in the lateral direction, and U1(−20,
20) mm in the leg length direction. These noises are added to the
measured foot positions. The foot sphere radii are randomized
to U1(6, 10) mm.

Finally, the ground friction was randomized to U1(0.4, 1.0).
Owing to this randomization, the robot can run not only on very
slippery ground but also on the ground with very high friction
like asphalt.

III. RESULTS

Part of the results in this section can also be found in the
accompanying video.

A. Controller Descriptions

To evaluate the performance of the proposed network struc-
tures and analyze how each component affects different perfor-
mance metrics, we test the following settings:
� Implicit: As a baseline, the explicit state estimator in our

proposed framework is substituted with an implicit estima-
tor as in [3], [4].

� Sequential: In phase 1, a policy is trained with the ground
truth robot states. In phase 2, a state estimator was trained
with the final policy of phase 1. For implementation, the
estimator replaces the ground truth input.

� Built-in MPC: The MPC controller described in [17]
� RL-LKF: An RL policy in a single MLP form trained with

the linear velocity data from the simulator and uses an LKF
state estimator on the real robot.

� Concurrent: Our proposed control framework trained on
relatively flat ground

� Concurrent+Slope: Our proposed control framework
trained on randomly generated slopes.

In addition to the above models, we also created four other
network models by excluding one of the three estimated states or
all of them (i.e., w/o Linvel Estimator, w/o FootHeight Estimator,
w/o Contact Estimator, w/o Estimator) for ablation studies in
simulation.

For comparison of the explicit and implicit estimators, we
trained the Implicit model. The implicit estimator follows the
framework in [4]. During the phase 1, the encoder takes the
observation ot\(Qhist, Q̇hist), linear velocity, foot height, and
foot contact as an input. For the adaptation module, the history

Fig. 3. Learning curves of the total reward, linear velocity reward, and foot
clearance reward are shown. The linear velocity, foot height, and contact prob-
ability are estimated. The Concurrent model has the highest performance and
learning stability, while the model without an estimator (w/o Estimator) has the
lowest performance.

TABLE III
ABLATION STUDY FOR THE ESTIMATOR: REWARD OF THE LEARNED MODELS

length of 20 is used and the network consists of 3 layers of 1D
CNN. The output dimension of the encoder and adaptation mod-
ule is 11. All the other settings are the same as our framework.
The total training time is 7 hours for phases 1 and 2 altogether.

B. Evaluation of the Performance in Simulation

1) Learning Performance: First, we compared the perfor-
mance of the learned controllers (i.e., Concurrent, w/o Linvel
Estimator, w/o FootHeight Estimator, w/o Contact Estimator,
and w/o Estimator) in simulation. Each network structure is
trained four times and their average learning curves are shown
in Fig. 3. All the models were trained until they converged to a
stable expected return. After 2500 iterations, which consumed
about 800 million samples and 4 hours of training in real-time,
they all converged to a stable value. The rewards of the trained
models are summarized in the Table III.

As shown in Fig. 3 and the Table III, the Concurrent model
converges to the highest rewards while the w/o Estimator and Im-
plicit models converge to the lowest. Out of the three estimated
states, linear velocity estimation plays the most important role
in improving the policy. Omitting the linear velocity estimation
leads to a significant drop in metrics: the total, linear velocity,
and foot clearance rewards. This result proves that the linear
velocity is crucial for learning the locomotion of legged robots.

Another noticeable improvement comes from the foot height
estimation. Explicitly estimating the foot height improves the
foot clearance of the robot, resulting in a higher foot clearance
reward. The effectiveness of the higher foot clearance will be
discussed in the Locomotion on rough terrains section.
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TABLE IV
TRACKING AND ESTIMATION ERROR & LOCOMOTION ON ROUGH TERRAINS

Foot contact probability estimation makes the least impact on
the final performance, but it stabilizes and accelerates learning
processes as shown in the total reward graph in Fig. 3.

2) Tracking and Estimation Error: For further investigation
on the impact of the estimator network, we tested the Concurrent,
w/o Estimator, and Implicit models in simulation. All models
were given the same random commands every 20 seconds and
for 10 minutes in total while the friction coefficient of the flat
ground is kept at 0.6. The performance was only measured for the
steady-state errors. The velocity commands are sampled from
U1(-1.75, 3.5) m/s, U1(-1, 1) m/s, and U1(-2, 2) rad/s, forVx, Vy,
and ω, respectively.

The result is shown in the Table IV. The Concurrent model has
the smallest RMS errors for following the given linear velocity.
It means that the estimated states help the robot to stabilize itself.
Furthermore, the tracking errors of the Implicit model are on a
similar level to that of w/o Estimator. From this fact, we suggest
that tracking performance does not benefit a lot from utilizing
the implicit estimator. Models with the implicit estimator having
a latent vector of sizes 8 and 20 showed worse performance than
the presented one.

Interestingly, our concurrently trained model performs bet-
ter than a sequentially trained model. From the Table IV, the
Sequential model has slight performance degradation. We hy-
pothesize that this is because the policy trained with a state
estimator tends to avoid states where the state estimator becomes
unreliable. This problem can be easily solved by training them
concurrently as we proposed. Note also that the concurrent train-
ing requires only one training dataset, which is more efficient
than the sequential training.

3) Locomotion on Rough Terrains: We investigated the ef-
fectiveness of the foot clearance of the learned models. The
foot clearance should be sufficiently high for traversing over the
rough terrains. Therefore, in this experiment, we compare the
average time to fall on the rough terrains with z-scale of 0.525.
Commands are sampled from U1(-1, 1) m/s, and U1(-1, 1) rad/s
where the foot clearance is relatively small.

From the Table IV, the Concurrent model shows an over-
whelming performance compared to the other models. It is
robust against a fall due to increased foot clearance. On the other
hand, an implicit estimator and a single policy do not have suf-
ficient foot clearance. Eventually, they are easy to fall and have
worse locomotion performance. In conclusion, we suggest that

the explicit estimation of the foot height significantly contributes
to locomotion performance.

4) Computational Cost: The trained estimator has computa-
tional benefits over analytical state estimators. Using a single
core of Ryzen9 5950x, the estimator network takes 7 μs for a
forward pass, while the linear Kalman filter on the Mini Cheetah
consumes 34 μs. Also, the implicit estimator with 20 history
inputs takes 20 μs which is about three times longer than the
simple explicit estimator.

C. Evaluation of the Performance on the Real Robot

We evaluated the performance of controllers on the real
robot in terms of command following, state estimation, the
maximum running speed, the maximum traversable slope angle,
and foot clearance. The Concurrent+Slope model requires 5000
iterations for convergence due to the challenging terrains. The
summary of the performance is shown in the Table V.

1) Network Implementation on the Real Robot: For the ex-
periments in the real environments, we compared the five afore-
mentioned control models: Built-in MPC, RL-LKF, Concurrent,
and Concurrent+Slope. As described in the Controller Descrip-
tion section, the RL-LKF model requires an LKF state estimator.
However, we could not use the built-in contact estimator as
it assumes a periodic gait schedule, while our learned policy
inherently changes gait patterns over speeds. Therefore, when
estimating the contact state of the RL-LKF model for the LKF, we
used the proprioceptive touchdown detection method described
in [23]. When the difference between the KFE joint position and
its desired position is over the threshold of -0.4 rad, we assume
that the leg is in contact.

2) Command Following and State Estimation: In the real
environments, each controller was tested on normal and slippery
ground with a step velocity command of 1.0 m/s, 0.8 m/s, and
2.0 rad/s for linear velocities in x and y directions, and a yaw
rate, respectively. The commands continued for 1 s and the robot
started from zero commands. The slippery plate covered with
boric acid powder has a friction coefficient of 0.22, which is
much lower than that of the training environments. The results
are shown in the Table V. In some cases, the Built-in MPC
controller fell and those instances are marked with ‘-’ in the
table. On the other hand, RL policies performed robustly against
all sudden step inputs in this experiment. The Concurrent model
has the best tracking performance, while the Concurrent+Slope
model has a slightly higher error possibly due to the fact that the
Concurrent model is overfitted to simpler terrains.

We also recorded the estimation data from the LKF while
the Concurrent and Concurrent+Slope models are running. The
errors from the estimator networks are written in the parentheses.
We note that estimation error does not necessarily lead to a
deterioration in tracking performance. We suppose that other
observation inputs, such as joint state history, mitigate the ef-
fects of the estimation errors so that the concurrent learning
framework becomes robust against these errors.

3) High-Speed Locomotion: The Concurrent+Slope model
has the highest maximum speed. We tested each controller
repeatedly until the robot fell. The maximum outdoor speed
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TABLE V
PERFORMANCE OF CONTROLLERS ON THE REAL ROBOT

of our model, 3.75 m/s, is comparable to the one reported by
Kim et al. [11], who report outdoor speed of over 1.7 m/s and
treadmill speed of 3.7 m/s.

Our Concurrent+Slope controller is capable of running at
3.54 m/s on a slippery plate with μ = 0.22. When large foot
slippages occurred, the robot recovered quickly, even when the
robot is running near the maximum speed. If the command is
suddenly set to zero while running, the robot makes a stable
pose to stop quickly. We assume that this high performance is
achieved owing to two factors: the policy trained on low friction
terrains and its independence on a state estimation algorithm.
Because our proposed framework is trained to be aware of
possible foot slippages, it can be robust against estimation errors.

On both normal and slippery ground, the Concurrent model
exhibits better performance than the Built-in MPC and RL-LKF
models. The Built-in MPC model could not reach speeds over
1.7 m/s on the normal ground and was easy to fall on the slippery
ground at speed under 1.3 m/s. RL-LKF model also runs at rather
conservative speeds lower than 2.2 m/s. On the other hand, all the
RL controllers are able to run consistently on all tested terrains as
they are trained on terrains with the various friction coefficients.

4) Locomotion on Hills: Training a policy on slopes with
random angles and friction coefficients significantly improves
climbing performance. The Concurrent+Slope model is capable
of climbing a normal hill up to 19.1 ◦, which is steeper than
slope angles of the training environments, ±10 ◦. Also, we note
that Concurrent+Slope model can walk up a slippery hill up
to 9.0 ◦. Although the feet of the robot are slipping on it, the
robot managed to climb up the slope by pushing the ground with
adequate force. This behavior is partially learned in simulation,
but the robot adapts its motion for the much more slippery slope
of the friction coefficient of 0.22. For outdoor environments,
we demonstrate the performance of our policy on a bumpy and
hilly asphalt road. Please refer to the supplementary video for
the demonstration.

The other controllers could not climb up a normal hill with
angles steeper than 12.4 ◦. Because the RL controllers except for
the Concurrent+Slope model are trained only on nearly flat ter-
rains, they have unsatisfactory climbing performance. Although

Fig. 4. A contact estimation diagram for the front right foot is shown. KFE
joint position error, joint velocity, and contact state are drawn. Contact starts
with an abrupt change of the joint velocity by impact with the ground and ends
with upward joint motion.

the other controllers’ maximum traversable slope angles are on
a similar level, they display different locomotion characteristics.
The Built-in MPC model has higher foot clearances, but its non-
stopping gait makes the robot unstable. The other RL models
show relatively lower foot clearances, while their standing-still
behavior significantly improves the stability of the robot.

5) Foot Clearance: We evaluated the foot clearance of each
controller while the robot is running at 1.0 m/s. The maximum
foot clearance is shown in the Table V. We could recognize
that foot clearance of the Concurrent and Concurrent+Slope
models on the real robot is higher than that of the models
without the estimator network, RL-LKF and w/o Estimator.
As shown in the simulation test, lower foot clearance hinders
stable locomotion on highly uneven terrains. This issue remains
equally problematic on the real robot. We discovered that the
RL-LKF and w/o Estimator models exhibit lower foot clearance
at low speeds. Therefore, we suggest that explicit estimation of
the foot clearance is effective for improving the performance.

6) Contact Estimation: Our proposed estimator network out-
puts contact probability for each foot. In Fig. 4, the contact state
probability of the front right foot is drawn with the real contact
state, KFE joint position error and joint velocity. The estimated
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contacts are shifted by 0.04 seconds from the actual contacts,
which corresponds to 3 control steps excluding 0.01 seconds of
communication delay. This is because there is a reality gap due to
the compliance of the chain and the rubber feet of the real robot.
In addition, the joint history inputs are sparsely sampled with
0.02-second intervals and it introduces further delay in detection.
The estimator network detects a contact when the joint abruptly
stops by impacts with the ground. The diagram also justifies
the threshold of -0.4 rad of joint position error for the contact
estimation used for LKF.

IV. CONCLUSION

We presented a framework for concurrent training of a control
policy and a state estimator. This framework requires neither
an advanced control algorithm nor an accurate state estima-
tion algorithm. Therefore, it requires significantly less effort
for implementation on the real-legged system. Furthermore,
our concurrent training method outperforms implicit estimation
methods and a sequential training method in many aspects such
as command tracking, robustness on rough terrain, and training
time. To the best of our knowledge, our record is the fastest
reported legged locomotion using reinforcement learning. The
robot is also able to stably run on a slippery plate even under
foot slippages. Although foot slippages often compromise the
quality of the state estimation, the concurrently trained policy
is robust against such issues. The proposed learning-based state
estimation can be useful without the control policy in many
applications. It can provide reliable state estimates for motion
analysis. Furthermore, we expect that the interpretable state
outputs from our proposed network can be useful in conjunction
with other controllers, such as MPC-based ones.

REFERENCES

[1] J. Hwangbo et al., “Learning agile and dynamic motor skills for legged
robots,” Sci. Robot., vol. 4, no. 26, 2019, Art. no. eaau5872.

[2] M. Hutter et al., “Anymal - A highly mobile and dynamic quadrupedal
robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016,
pp. 38–44.

[3] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Sci. Robot., vol. 5,
no. 47, 2020, Art. no. eabc5986.

[4] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “RMA: Rapid motor adaptation
for legged robots,” in Proc. Robot.: Sci. Syst. Conf., 2021, Art. no. 011.

[5] X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” in Proc.
Robot: Sci. Syst., 2020, Art. no. 064.

[6] J. Lee, J. Hwangbo, and M. Hutter, “Robust recovery controller
for a quadrupedal robot using deep reinforcement learning,” 2019,
arxiv:1901.07517.

[7] C. Yang, K. Yuan, Q. Zhu, W. Yu, and Z. Li, “Multi-expert learn-
ing of adaptive legged locomotion,” Sci. Robot., vol. 5, no. 49, 2020,
Art. no. eabb2174.

[8] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, “Blind bipedal
stair traversal via sim-to-real reinforcement learning,” in Proc. Robot.: Sci.
Syst. Conf., 2021, Art. no. 061.

[9] J. Siekmann, Y. Godse, A. Fern, and J. Hurst, “Sim-to-real learning of all
common bipedal gaits via periodic reward composition,” in Proc. IEEE
Int. Conf. Robot. Automat., 2021, pp. 7309–7315.

[10] C. Gehring et al., “Dynamic trotting on slopes for quadrupedal robots,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2015, pp. 5129–5135.

[11] D. Kim, J. D. Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model predic-
tive control,” 2019, arXiv:1909.06586v1.

[12] S. Hong, J.-H. Kim, and H.-W. Park, “Real-time constrained nonlinear
model predictive control on SO(3) for dynamic legged locomotion,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020, pp. 3982–3989.

[13] Y. Ding, A. Pandala, C. Li, Y.-H. Shin, and H.-W. Park, “Representation-
free model predictive control for dynamic motions in quadrupeds,” IEEE
Trans. Robot., vol. 37, no. 4, pp. 1154–1171, Aug. 2021.

[14] R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle, “Contact-aided
invariant extended kalman filtering for robot state estimation,” Int. J. Robot.
Res., vol. 39, no. 4, pp. 402–430, 2020.

[15] J.-H. Kim et al., “Legged robot state estimation with dynamic contact event
information,” IEEE Robot. Automat. Lett., vol. 6, no. 4, pp. 6733–6740,
Oct. 2021.

[16] J. Hwangbo, C. D. Bellicoso, P. Fankhauser, and M. Hutter, “Probabilistic
foot contact estimation by fusing information from dynamics and differen-
tial/forward kinematics,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2016, pp. 3872–3878.

[17] B. Katz, J. D. Carlo, and S. Kim, “Mini cheetah: A platform for pushing
the limits of dynamic quadruped control,” in Proc. IEEE Int. Conf. Robot.
Automat., 2019, pp. 6295–6301.

[18] J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for
solving contact dynamics,” IEEE Robot. Automat. Lett., vol. 3, no. 2,
pp. 895–902, Apr. 2018.

[19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” 2017, arXiv:1707.06347.

[20] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018, pp. 331–332.

[21] D. Reda, T. Tao, and M. van de Panne, “Learning to locomote: Understand-
ing how environment design matters for deep reinforcement learning,” in
Proc. Motion Interaction Games, New York, NY, USA, 2020, Paper 16.

[22] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real
transfer of robotic control with dynamics randomization,” in Proc. IEEE
Int. Conf. Robot. Automat., 2018, pp. 3803–3810.

[23] D. J. Hyun, J. Lee, S. Park, and S. Kim, “Implementation of trot-to-gallop
transition and subsequent gallop on the mit cheetah I,” Int. J. Robot. Res.,
vol. 35, no. 13, pp. 1627–1650, 2016.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 08,2022 at 14:52:23 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


